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Abstract. We report next-to-leading order perturbative QCD predictions of 4 jet event shape variables for
the process e+e− → 4 jets obtained using the general purpose Monte Carlo EERAD2. This program is based
on the known ‘squared’ one loop matrix elements for the virtual γ∗ → 4 parton contribution and squared
matrix elements for 5 parton production. To combine the two distinct final states numerically we present
a hybrid of the commonly used subtraction and slicing schemes based on the colour antenna structure of
the final state which can be readily applied to other processes. We have checked that the numerical results
obtained with EERAD2 are consistent with next-to-leading order estimates of the distributions of previously
determined four jet-like event variables. We also report the next-to-leading order scale independent coeffi-
cients for some previously uncalculated observables; the light hemisphere mass, narrow jet broadening and
the 4 jet transition variables with respect to the JADE and Geneva jet finding algorithms. For each of these
observables, the next-to-leading order corrections calculated at the physical scale significantly increase the
rate compared to leading order (the K factor is approximately 1.5 – 2). With the exception of the 4 jet
transition variables, the published DELPHI data lies well above the O(α3

s) predictions. The renormalisa-
tion scale uncertainty is still large and in most cases the data prefers a scale significantly smaller than the
physical scale. This situation is reminiscent of that for three jet shape variables, and should be improved
by the inclusion of power corrections and resummation of large infrared logarithms.

1 Introduction

Electron-positron colliders, in particular those at both
LEP and SLAC, have provided much precision data with
which to probe the structure of QCD. This is particu-
larly valuable data because the strong interactions occur
only in the final state and are not entangled with the par-
ton density functions associated with beams of hadrons.
In addition to measuring multi-jet production rates, more
specific information about the topology of the events can
be extracted. To this end, many variables have been in-
troduced which characterize the hadronic structure of an
event. For example, we can ask how planar or how col-
limated an event is. In general, a variable is described
as n jet-like if it vanishes for a final state configuration
of n − 1 hadrons. With the precision data from LEP and
SLC, experimental distributions for such event shape vari-
ables have been studied and have been compared where
possible with theoretical calculations.

Generally speaking, leading order (LO) predictions
successfully predict the general features of distributions,
but can be improved by resumming kinematically-domi-
nant logarithms, by including more perturbative informa-
tion or both. A next-to-leading order (NLO) treatment
of three-jet like variables was first performed in [1,2] and
systematically completed in [3]. Armed with such calcula-
tions, one can extract a value for the strong coupling αs

either directly from the event shape distributions [4] or
from the energy dependence of their average value [5]. Al-

ternatively, one can study the group parameters of the
gauge theory of the strong interactions [6], though for
three jet observables, the gluon-gluon coupling (propor-
tional to CA) occurs first at NLO.

Recent calculations of the relevant one-loop four par-
ton matrix elements for γ∗ → 4 partons [7] and e+e− →
4 partons [8], together with the known tree-level five par-
ton matrix elements [9] have enabled the phenomenology
of four-jet production to be be studied at next-to-leading
order. So far, two groups have used these matrix elements
to construct general purpose Monte Carlo programs for
four jet-like quantities MENLO PARC [10] and DEBRECEN [11],
which have been used to measure the four jet fraction R4
and a variety of event shape distributions [11]. We note
that four jet production is sensitive to the casimir struc-
ture of QCD [12,8] and four jet events may be used to
constrain the allowed values of CF , CA and TR [13] by
examining the angles between the jets [14]. One may also
place next-to-leading order bounds on the possible pres-
ence of the elusive light gluino present in many supersym-
metric models [15].

Any such Monte Carlo program must suitably combine
the virtual four parton and real five parton pieces of the
cross section. That is,

σNLO =
∫

dσ4 +
∫

dσ5

=
∫

dPS4 |M4|2 +
∫

dPS5 |M5|2, (1.1)
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where the n-parton contributions dσn are integrals over
the n-parton phase-space dPSn. Both integrals are sepa-
rately divergent, and contain both infrared and ultraviolet
singularities. The ultraviolet poles are removed by renor-
malisation, however the soft and collinear infrared poles
are only cancelled when the virtual graphs are combined
with the bremstrahlung process and one must provide a
means to cancel the infrared singularities caused by two
particles becoming collinear or one soft. Although the can-
cellation of infrared poles can be done analytically for sim-
ple processes, for complicated processes, it is necessary to
resort to numerical techniques. A variety of methods -
known as subtraction [1,16,17], slicing [2,18] and hybrid
subtraction [19] - are in general use, and variations of the
subtraction formalism have been implemented in [10,11].
Here we report on results obtained using a third numeri-
cal implementation of these matrix elements to compute
generic infrared safe four jet observables. We call this pro-
gram EERAD2 [20] and it is based on the ‘squared’ one-loop
matrix elements for γ∗ → 4 partons of [7] together with
squared tree level matrix elements for γ∗ → 5 partons. To
isolate and cancel the infrared singularities, we use a hy-
brid approach that contains elements of both slicing and
subtraction methods. In particular, we use an antenna fac-
torisation where two (colour connected) hard partons ra-
diate a third that may be unresolved. This is necessarily a
rather technical subject and it is detailed in the appendix.

For the bulk of the paper we are more concerned with
the phenomenology of four jet-like shape variables and, in
particular, we extend the set of variables that have been
computed at O(α3

s).
1 To be precise, we present next-to-

leading order coefficents for the differential distributions
of the narrow jet broadening, light hemisphere mass and
the jet transition variable for the JADE and Geneva jet
algorithms. To compare with previous results, we also con-
sider the thrust minor, D parameter and the jet transition
variable for the Durham jet algorithm as well as the four
jet rate as a function of the jet resolution parameter ycut.

In Sect. 2, we give the definitions of the relevant four
jet shape variables and review the structure of the pertur-
bative predictions. Section 3 shows the consistency of our
program, by reproducing the known four-jet fraction and
D parameter distributions. The main results are reported
in Sect. 4 and comparisons with experimental data follow
in Sect. 5, where we also discuss how we might optimize
our perturbative input by choice of a suitable renormaliza-
tion scale. Conclusions are summarized in Sect. 6. Finally,
a more detailed discussion of our method for cancellation
of the infrared singularities is reserved for the Appendix.

2 Four jet event shapes

The sorts of variables we are interested in are four jet-like,
since they can only be non-zero for final states in which
there are four or more particles. They usually rely on the
hadronic final state having some volume and, when the

1 Some of the results presented here have been reported in
[21].

event is coplanar, some observables like the D parameter
are identically zero.

2.1 Definition of variables

In the following definitions, the sums run over all N final
state particles, k = 1, . . . , N . pk is the three-momentum
of particle k in the c.m. frame, with components pi

k, i =
1, 2, 3.

(a) C and D parameters [22].

We first construct the linear momentum tensor,

Θij =

∑
k

pi
kpj

k

|pk|∑
k |pk| , (2.1)

with eigenvalues λi for i = 1, 2, 3. The normalisation
is such that

∑
i λi = 1. For planar events one of the

eigenvalues is zero. The C and D parameters are de-
fined by,

D = 27λ1λ2λ3, (2.2)

and,
C = 3(λ1λ2 + λ2λ3 + λ3λ1). (2.3)

D can only be non-zero for non-planar four (or more)
parton events, while three parton events may produce
0 ≤ C ≤ 0.75. Only the region C > 0.75 should be
considered four jet-like.

(b) Thrust minor, Tminor [23].

We first define the thrust, major and minor axes (n1,
n2,n3) by,

Ti = max
ni

∑
k |pk · nk|∑

k |pk| , (2.4)

where n2 is constrained by n1 · n2 = 0. and n3 =
n1 × n2.

(c) Light hemisphere mass, M2
L/s.

The event is separated into two hemispheres H1, H2
divided by the plane normal to the thrust axis n1,
as defined above. Particles that satisfy pi.n1 > 0 are
assigned to hemisphere H1, while all other particles
are in H2. Then,

M2
L

s
=

1
s

· min
i=1,2

 ∑
pk∈Hi

pk

2

. (2.5)

Note that this is the common modification of the orig-
inal definition suggested by Clavelli [24].

(d) Narrow jet broadening, Bmin [25].

Using the same division into hemispheres as above, we
define,

Bmin = min
i=1,2

∑
pk∈Hi

|pk × n|
2
∑

k |pk| . (2.6)
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(e) Aplanarity, A [26].

Here we consider the eigenvalues, λ1 ≥ λ2 ≥ λ3 of the
quadratic momentum tensor,

Φij =
∑

k pi
kpj

k∑
k |pk|2 . (2.7)

Aplanarity is defined by,

A =
3
2
λ3, (2.8)

which is clearly zero for planar three particle events.
Unfortunately, Aplanarity is not stable to situations
where a particle fragments into two collinear particles;
it is not collinear safe. We therefore drop it from fur-
ther consideration.

(f) Jet transition variable yS
4 .

The yS
4 variable denotes the value of the jet resolu-

tion parameter ycut at which an event changes from a
four jet event to a three jet event where the jets are
defined according to algorithm S. We consider three
algorithms, the JADE algorithm (S = J) [27], the
Durham algorithm (S = D) [28] and the Geneva al-
gorithm (S = G) [29]. The jet-finding measures for
each of these three algorithms are as follows,

yJ
ij =

2 EiEj(1 − cos θij)
s

,

yD
ij =

2 min(E2
i , E2

j )(1 − cos θij)
s

,

yG
ij =

8
9

EiEj(1 − cos θij)
(Ei + Ej)2

, (2.9)

where the factor of 8/9 in the Geneva algorithm is
simply to ensure that the maximum value of ycut that
reconstructs three jets from three partons is 1/3 as it is
for the other two algorithms. When particles combine,
there is some ambiguity as to how to add the ener-
gies and momenta. In all three schemes, we use the E
scheme i.e. we merely add four momenta,

pµ
ij = pµ

i + pµ
j . (2.10)

Other choices such as the E0 or P schemes where the
cluster is made massless by rescaling the momentum
or energy give similar results.
In a given four-jet event, yS

4 may be computed by sim-
ply determining the minimum value of the measure yS

ij
as given above over all possible pairs of jets. For val-
ues of ycut above this minimum, the corresponding jets
i and j would be merged by the jet-finding procedure
and the event would contain only 3 jets. This is similar
to, but not identical to, the differential jet rate deter-
mined by the DELPHI collaboration. The difference
comes from five jet configurations that contribute to
the differential four jet rate by becoming four jet like
as ycut increases. This is a small (∼ few %) effect.

Of these variables, the D, C, Tminor and yD
4 distribu-

tions have been studied in [11].

2.2 Structure of perturbative prediction

The differential cross-section at centre-of-mass energy
√

s
for one of these four-jet variables (O4) at next-to-leading
order is described by two coefficients, BO4 and CO4 which
represent the leading and next-to-leading order perturba-
tive contributions,

1
σ0

· O4
dσ

dO4
=
(

αs(µ)
2π

)2

BO4 (2.11)

+
(

αs(µ)
2π

)3(
2β0 log

(
µ2

s

)
BO4 + CO4

)
.

Both BO4 and CO4 are scale independent and do not de-
pend on the beam energy. However, the running coupling
αs is calculated at renormalization scale µ which is com-
monly chosen to be the physical scale, µ =

√
s. Compared

to the leading order prediction, which decays monoton-
ically with increasing µ, the next-to-leading order term
reduces the scale dependence somewhat through the first
coefficient of the beta-function, β0 = (33 − 2Nf )/ 6. For
five active quark flavours, β0 = 3.833.

The individual coefficients BO4 and CO4 depend on
the number of colours and flavours, or equivalently, the
group casimirs of the standard model. As such, four jet
event shapes may be used to simultaneously constrain the
strong interaction gauge group as well as the strong cou-
pling constant.

2.3 Scale choice and theoretical uncertainty

As mentioned above, for hadronic observables in electron-
positron annihilation it is common to choose the renormal-
isation scale to be the physical scale µ =

√
s. This choice

is motivated by naturalness arguments and the fact that
choosing a scale far from

√
s introduces large logarithms

of the form log(µ/
√

s) in (2.11). Since the renormalisa-
tion scale is only a theoretical construct, it has become
common practice to estimate the uncertainty engendered
by truncating the perturbative expansion by varying µ by
factors about the physical scale.

Other approaches have been considered with rather
different scale choices. One such approach is to stipulate
that the next-to-leading order coefficient vanishes. That is
to say that the LO and NLO predictions coincide.2 This
occurs at the scale,

µFAC =
√

s exp
(

− CO4

4BO4β0

)
, (2.12)

and is called the scale of fastest apparent convergence
(FAC) [30]. As we will see, CO4 is typically 50-100 times
larger than BO4 so that µFAC may be as small as 10−2–
10−3 of the physical scale.

Another common choice is to select the scale where the
NLO prediction is most insensitive to the choice of scale

2 In other words, the ratio of NLO to LO predictions com-
monly called the K-factor is identically unity.
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[31]. However, this scale is very close to the FAC scale
(15% smaller) so that the Principle of Minimal Sensitivity
scale (PMS) predictions lie very close to the FAC scale
prediction.

While even higher order corrections remain uncalcu-
lated, varying the renormalisation scale can only give a
crude indication of the theoretical uncertainty. Therefore,
in an attempt to make a fair estimate of the theoretical
uncertainty on the NLO prediction we will show both the
physical scale and FAC scale predictions.

2.4 Infrared behaviour

Four jet event shapes typically depend on the event having
some volume and not lying entirely in a plane. Typical
hadronic events contain more than 20 hadrons and it is
extremely unlikely that the value of any event shape is
precisely zero for any experimental event.However, in a
LO or NLO fixed order parton calculation, there only four
or five partons present in the final state and, when one
or more are soft, the calculated O4 may approach zero.
In such circumstances, soft gluon singularities cause the
fixed order prediction to become wildly unstable and grow
logarithmically. In the small O4 limits, the perturbative
coefficients have the following form,

BO4 → A32L
3 + A22L

2 + A12L + A02,

CO4 → A53L
5 + A43L

4 + A33L
3 + A23L

2

+A13L + A03, (2.13)

where L = log(1/O4) and Anm are (as yet) undetermined
coefficients. Whenever L is sufficiently large, resumma-
tion effects will be important.3 In comparing with data,
we therefore choose to make a cut on the size of O4 which
is typically in the range 0.001 — 0.01, since for such small
values of O4 we do not trust the NLO prediction. In com-
paring with the DELPHI data, this cut will usually be the
lower edge of the second data bin.

3 Comparison with existing results

3.1 Four jet rates

As a check of the numerical results, Table 1 shows the
predictions for each of the three Monte Carlo programs
for the four jet rate for three jet clustering algorithms; the
Jade-E0, Durham-E [28], and Geneva-E [29] algorithms.
We show results with αs(MZ) = 0.118 for three values of
the jet resolution parameter ycut. There is good agreement
with the results from the other two calculations.

3.2 Shape variables

As mentioned earlier, Nagy and Trócsányi [11] have com-
puted CD with their Monte Carlo DEBRECEN. In Table 2 we

3 Whether the coefficients exponentiate and can be re-
summed will depend on the observable.

show the leading and next-to-leading order coefficients BD

and CD calculated by EERAD2, together with the DEBRECEN
result. The two calculations are clearly consistent with
one another, with the quoted errors overlapping in almost
all cases. The errors from EERAD2 are of the order of 2%
in each bin, except in the tail of the distribution where
the errors rise as high as 10%. The infrared enhancement
of the distribution described in Sect. 2.4 means that the
Monte Carlo procedure favours the phase space region cor-
responding to small values of the D parameter, so that the
large D tail suffers larger errors. In fact CD drops by four
orders of magnitude over the kinematic range of the ob-
servable so it is necessary to use importance sampling with
respect to the observable distribution to ensure sufficient
Monte Carlo points are produced in the high D region.
This is also true for all of the other shape variables.

In addition, Nagy and Trócsányi have also presented
results for the next-to-leading order coefficents for thrust
minor Tminor and the jet transition variable in the Durham
scheme yD

4 [11]. Although we do not present a detailed
comparison here, we note that the agreement is qualita-
tively the same as discussed for the D parameter above.
We find that the distributions extend beyond the range of
coefficents presented in [11], with non-zero coefficients for
bins in the ranges 0.5 < Tminor < 0.58 and 0.125 < yD

4 <
0.17.

4 New results

In this section we extend the analysis of 4 jet-like event
shape observables already found in the literature by re-
porting the leading and next-to-leading order coefficients
for the light hemisphere mass, the narrow hemisphere
broadening and the jet transition variable in both the
JADE and Geneva schemes, yJ

4 and yG
4 . In particular, we

examine the relative sizes of the two terms by inspecting
the K factor (at the physical scale) for each variable across
the allowed kinematic range of the distributions.

For all the variables presented in this section, we must
be careful to differentiate between the true behaviour of
the distribution as the observable tends to zero and the
behaviour in fixed order perturbation theory. Each of the
observables should have a smooth behaviour as O4 → 0
rather than the divergent behaviour exhibited by the co-
efficients according to equation 2.13. To recover a smooth
result in this limit it is necessary to resum powers of
log(1/O4) where possible, a procedure which has been per-
formed already for many 3 jet-like variables [32,25]

4.1 Light hemisphere mass

As defined before, the light hemisphere mass is the smaller
invariant mass of the two hemispheres formed by sepa-
rating the event by a plane normal to the thrust axis.
The NLO coefficient CM2

L
/s evaluted at the physical scale

µ =
√

s together with the LO term is given in Table 3.
The errors are estimates from the numerical program and
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Table 1. The four-jet fraction as calculated by MENLO PARC, DEBRECEN and EERAD2, for
the different jet recombination schemes and varying ycut. The rate is normalized by the
O(αs) total hadronic cross-section, σhad = σ0 (1 + αs/π)

Algorithm ycut MENLO PARC DEBRECEN EERAD2

0.005 (1.04 ± 0.02) · 10−1 (1.05 ± 0.01) · 10−1 (1.05 ± 0.01) · 10−1

Durham 0.01 (4.70 ± 0.06) · 10−2 (4.66 ± 0.02) · 10−2 (4.65 ± 0.02) · 10−2

0.03 (6.82 ± 0.08) · 10−3 (6.87 ± 0.04) · 10−3 (6.86 ± 0.03) · 10−3

0.02 (2.56 ± 0.06) · 10−1 (2.63 ± 0.06) · 10−1 (2.61 ± 0.05) · 10−1

Geneva 0.03 (1.71 ± 0.03) · 10−1 (1.75 ± 0.03) · 10−1 (1.72 ± 0.03) · 10−1

0.05 (8.58 ± 0.15) · 10−2 (8.37 ± 0.12) · 10−2 (8.50 ± 0.06) · 10−2

0.005 (3.79 ± 0.08) · 10−1 (3.88 ± 0.07) · 10−1 (3.87 ± 0.03) · 10−1

JADE-E0 0.01 (1.88 ± 0.03) · 10−1 (1.92 ± 0.01) · 10−1 (1.93 ± 0.01) · 10−1

0.03 (3.46 ± 0.05) · 10−2 (3.37 ± 0.01) · 10−2 (3.35 ± 0.01) · 10−2

Table 2. The leading and next-to-leading order coefficients for the D
parameter. The NLO coefficient predicted by Nagy and Trócsányi Monte
Carlo DEBRECEN [11] is also shown

D BD CD DEBRECEN

0.0200 (3.79 ± 0.01) · 102 (1.47 ± 0.00) · 104 (1.08 ± 0.06) · 104

0.0600 (2.32 ± 0.01) · 102 (1.25 ± 0.01) · 104 (1.24 ± 0.02) · 104

0.1000 (1.45 ± 0.01) · 102 (8.69 ± 0.04) · 103 (8.59 ± 0.12) · 103

0.1400 (1.04 ± 0.01) · 102 (6.39 ± 0.03) · 103 (6.24 ± 0.12) · 103

0.1800 (7.68 ± 0.04) · 101 (4.89 ± 0.03) · 103 (4.99 ± 0.11) · 103

0.2200 (5.87 ± 0.03) · 101 (3.88 ± 0.03) · 103 (3.85 ± 0.06) · 103

0.2600 (4.66 ± 0.07) · 101 (3.04 ± 0.03) · 103 (2.98 ± 0.05) · 103

0.3000 (3.75 ± 0.07) · 101 (2.51 ± 0.04) · 103 (2.52 ± 0.05) · 103

0.3400 (3.07 ± 0.05) · 101 (2.02 ± 0.03) · 103 (1.94 ± 0.05) · 103

0.3800 (2.41 ± 0.03) · 101 (1.61 ± 0.03) · 103 (1.59 ± 0.04) · 103

0.4200 (1.97 ± 0.04) · 101 (1.37 ± 0.02) · 103 (1.37 ± 0.03) · 103

0.4600 (1.56 ± 0.03) · 101 (1.09 ± 0.01) · 103 (1.06 ± 0.03) · 103

0.5000 (1.32 ± 0.01) · 101 (8.97 ± 0.14) · 102 (8.72 ± 0.19) · 102

0.5400 (1.05 ± 0.02) · 101 (7.12 ± 0.15) · 102 (7.11 ± 0.16) · 102

0.5800 (8.46 ± 0.16) · 100 (5.79 ± 0.12) · 102 (5.68 ± 0.14) · 102

0.6200 (6.60 ± 0.16) · 100 (4.55 ± 0.09) · 102 (4.46 ± 0.21) · 102

0.6600 (5.32 ± 0.13) · 100 (3.58 ± 0.07) · 102 (3.52 ± 0.11) · 102

0.7000 (3.99 ± 0.09) · 100 (2.80 ± 0.09) · 102 (2.74 ± 0.09) · 102

0.7400 (3.06 ± 0.05) · 100 (2.05 ± 0.08) · 102 (2.08 ± 0.08) · 102

0.7800 (2.26 ± 0.04) · 100 (1.58 ± 0.04) · 102 (1.54 ± 0.06) · 102

0.8200 (1.54 ± 0.04) · 100 (1.05 ± 0.03) · 102 (1.03 ± 0.04) · 102

0.8600 (9.72 ± 0.21) · 10−1 (6.72 ± 0.29) · 101 (6.66 ± 0.31) · 101

0.9000 (5.63 ± 0.16) · 10−1 (3.85 ± 0.17) · 101 (3.89 ± 0.20) · 101

0.9400 (2.62 ± 0.07) · 10−1 (1.71 ± 0.10) · 101 (1.71 ± 0.19) · 101

0.9800 (5.34 ± 0.11) · 10−2 (3.15 ± 0.27) · 100 (2.60 ± 1.30) · 100
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Table 3. The leading and next-to-leading order coefficients for
the light jet mass M2

L/s

M2
L/s BM2

L
/s CM2

L
/s

0.0150 (3.23 ± 0.08) · 102 (1.41 ± 0.01) · 104

0.0250 (1.88 ± 0.02) · 102 (8.85 ± 0.10) · 103

0.0350 (1.25 ± 0.02) · 102 (5.97 ± 0.11) · 103

0.0450 (8.52 ± 0.10) · 101 (4.14 ± 0.08) · 103

0.0550 (5.97 ± 0.06) · 101 (3.04 ± 0.04) · 103

0.0650 (4.20 ± 0.09) · 101 (2.15 ± 0.05) · 103

0.0750 (3.02 ± 0.07) · 101 (1.58 ± 0.05) · 103

0.0850 (2.13 ± 0.03) · 101 (1.11 ± 0.02) · 103

0.0950 (1.39 ± 0.04) · 101 (7.66 ± 0.23) · 102

0.1050 (8.75 ± 0.20) · 100 (4.97 ± 0.17) · 102

0.1150 (5.18 ± 0.13) · 100 (3.27 ± 0.07) · 102

0.1250 (2.59 ± 0.12) · 100 (1.66 ± 0.07) · 102

0.1350 (8.97 ± 0.35) · 10−1 (6.61 ± 0.41) · 101

0.1450 (2.49 ± 0.13) · 10−1 (1.79 ± 0.09) · 101

0.1550 (5.00 ± 0.27) · 10−2 (3.75 ± 0.26) · 100

0.1650 (1.46 ± 0.21) · 10−3 (2.30 ± 0.37) · 10−1

Table 4. The leading and next-to-leading order coefficients for
the narrow jet broadening Bmin

Bmin BBmin CBmin

0.0150 (1.19 ± 0.01) · 103 (3.41 ± 0.07) · 104

0.0250 (7.04 ± 0.06) · 102 (2.56 ± 0.02) · 104

0.0350 (4.80 ± 0.02) · 102 (1.92 ± 0.04) · 104

0.0450 (3.39 ± 0.02) · 102 (1.41 ± 0.02) · 104

0.0550 (2.49 ± 0.02) · 102 (1.07 ± 0.02) · 104

0.0650 (1.89 ± 0.02) · 102 (8.04 ± 0.12) · 103

0.0750 (1.43 ± 0.02) · 102 (6.29 ± 0.12) · 103

0.0850 (1.08 ± 0.01) · 102 (4.81 ± 0.08) · 103

0.0950 (8.19 ± 0.04) · 101 (3.65 ± 0.08) · 103

0.1050 (6.23 ± 0.08) · 101 (2.77 ± 0.09) · 103

0.1150 (4.69 ± 0.06) · 101 (2.10 ± 0.04) · 103

0.1250 (3.37 ± 0.04) · 101 (1.45 ± 0.04) · 103

0.1350 (2.36 ± 0.04) · 101 (1.09 ± 0.03) · 103

0.1450 (1.64 ± 0.03) · 101 (7.07 ± 0.25) · 102

0.1550 (9.82 ± 0.12) · 100 (4.48 ± 0.15) · 102

0.1650 (5.08 ± 0.12) · 100 (2.18 ± 0.10) · 102

0.1750 (1.71 ± 0.04) · 100 (7.53 ± 0.33) · 101

0.1850 (4.32 ± 0.11) · 10−1 (1.59 ± 0.12) · 101

0.1950 (5.47 ± 0.11) · 10−2 (1.34 ± 0.24) · 100

are typically 2-3% for each entry. As with the previously
known results on four jet event shapes, the NLO terms are
significantly larger than the LO term. Here, we see that
CM2

L
/s is typically 50 times larger than BM2

L
/s so that even

when the additional factor of αs/2π is restored, the NLO
correction is large. This is illustrated in Fig. 1 where the
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Fig. 1. The K-factors defined according to (4.1) for four jet
event shapes, the light hemisphere mass (solid), narrow jet
broadening (long-dashed) and jet transition variables in the
JADE (short-dashed) and Geneva (dotted) schemes. Each vari-
able has a different kinematic range

K factor defined by,

KO4 = 1 +
(

αs(
√

s)
2π

)
CO4

BO4

, (4.1)

is shown for O4 = M2
L/s. We see that the K factor in-

creases with the value of the observable, rising from 1.8 at
small M2

L/s up to 2.4. This behaviour is similar to that
observed for other four jet event shapes [11].

4.2 Narrow hemisphere broadening

Narrow hemisphere broadening, Bmin, is defined in a si-
miliar manner to the light hemisphere mass. The event is
again divided into two hemispheres by the plane normal
to the thrust axis, but now the momenta transverse to the
thrust axis is summed (normalised by the sum of absolute
momenta) in each hemisphere. The narrow hemisphere is
that with the least transverse momentum with respect to
the thrust axis. Numerical results for this variable as cal-
culated by EERAD2 can be found in Table 4. As with the
light hemisphere mass, the NLO contribution is signifi-
cant yielding a K factor of roughly 1.7 over most of the
kinematic range of the variable (see Fig. 1).

4.3 Jet transition variables

As previously stated the jet transition variable yS
4 de-

scribes the scale where two jets merge, thereby changing
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a four jet event into a three jet event. This is essentially
the same as the derivative of the four jet rate with respect
to the jet resolution parameter ycut. However, the number
of jets in an event is dependent on the jet finding algo-
rithm used to define the ‘closeness’ of particles which is
compared with ycut. In [11] the transition rate for the the
Durham jet finding algorithm [28] is given and we have
checked that our results are consistent with these predic-
tions. Here, we provide results for two other jet algorithms,
the JADE and Geneva [29] schemes for which the jet find-
ing measures are given in (2.9). We note that the Geneva
algorithm enjoys the same benefits as the Durham algo-
rithm in that it is also supposed to exponentiate, enabling
infrared logarithms to be safely resummed. It also ensures
that softly radiated gluons are clustered with hard partons
unless the angle of separation between two soft gluons is
much smaller than the angular separation between them
and a hard parton.

Our results for the two schemes are given in Tables 5
and 6. As can be seen from the tables the NLO coefficients
are large, which is again reflected in the large corrections
shown in Fig. 1. The K factor for the JADE scheme is
roughly 1.8-1.9, but is slightly smaller for the Geneva al-
gorithm, typically in the region 1.4-1.6.

5 Comparison with experimental data

Four jet event shape observables have been studied exten-
sively by the four LEP experiments. However, the most
complete analysis of event shape variables has been car-
ried out by the DELPHI collaboration [33]. Here, they
study all of the event shape variables discussed in Sect. 2.
Distributions based on charged particles alone as well as
charged and neutral particles are presented. In this sec-
tion, we wish to examine whether or not these event shapes
can be described by fixed order perturbation theory. As
discussed earlier, to avoid numerical instabilities in the
infrared region where fixed order perturbation theory is
no longer valid we impose a cut on the smallness of the
variable that is generally equal to the lower edge of the
second bin. More precisely, that is,

D > 0.008,

Tminor > 0.02,

M2
L/s > 0.01,

Bmin > 0.01,

yD
4 > 0.002,

yJ
4 > 0.002. (5.1)

The experimental distributions are normalised to the
hadronic cross section (rather than the Born cross sec-
tion) and are also not weighted by the observable, but are
rather,

1
σhad

· dσ

dO4
=
(

αs(µ)
2π

)2
BO4

O4
+
(

αs(µ)
2π

)3

(5.2)

×
(

2β0 log
(

µ2

s

)
BO4

O4
+

CO4 − 2BO4

O4

)
.

Table 5. The leading and next-to-leading order coefficients for
the jet transition variable in the Geneva-E algorithm yG

4

yG
4 ByG

4
CyG

4

0.0250 (8.00 ± 0.04) · 102 (9.93 ± 0.34) · 103

0.0350 (5.59 ± 0.04) · 102 (9.91 ± 0.30) · 103

0.0450 (4.15 ± 0.03) · 102 (8.57 ± 0.13) · 103

0.0550 (3.15 ± 0.03) · 102 (7.31 ± 0.18) · 103

0.0650 (2.47 ± 0.02) · 102 (5.96 ± 0.12) · 103

0.0750 (1.93 ± 0.02) · 102 (4.99 ± 0.14) · 103

0.0850 (1.50 ± 0.02) · 102 (3.96 ± 0.11) · 103

0.0950 (1.23 ± 0.01) · 102 (3.36 ± 0.13) · 103

0.1050 (9.88 ± 0.12) · 101 (2.84 ± 0.06) · 103

0.1150 (7.90 ± 0.09) · 101 (2.19 ± 0.09) · 103

0.1250 (6.07 ± 0.08) · 101 (1.69 ± 0.11) · 103

0.1350 (4.79 ± 0.07) · 101 (1.53 ± 0.08) · 103

0.1450 (3.84 ± 0.06) · 101 (1.15 ± 0.04) · 103

0.1550 (3.00 ± 0.05) · 101 (8.41 ± 0.53) · 102

0.1650 (2.26 ± 0.04) · 101 (6.52 ± 0.36) · 102

0.1750 (1.61 ± 0.02) · 101 (4.99 ± 0.33) · 102

0.1850 (1.21 ± 0.02) · 101 (3.60 ± 0.23) · 102

0.1950 (8.71 ± 0.27) · 100 (2.53 ± 0.20) · 102

0.2050 (5.70 ± 0.16) · 100 (1.78 ± 0.17) · 102

0.2150 (3.89 ± 0.09) · 100 (1.20 ± 0.11) · 102

0.2250 (2.41 ± 0.06) · 100 (6.83 ± 0.87) · 101

0.2350 (1.43 ± 0.05) · 100 (4.87 ± 0.36) · 101

0.2450 (7.69 ± 0.30) · 10−1 (2.57 ± 0.25) · 101

0.2550 (3.78 ± 0.09) · 10−1 (1.18 ± 0.13) · 101

0.2650 (1.50 ± 0.04) · 10−1 (4.57 ± 0.79) · 100

0.2750 (4.20 ± 0.17) · 10−2 (1.15 ± 0.35) · 100

0.2850 (4.59 ± 0.39) · 10−3 (1.16 ± 0.65) · 10−1

0.2950 (5.37 ± 0.91) · 10−5 (2.15 ± 1.11) · 10−3

Throughout, we choose αs(MZ) = 0.118 which is consis-
tent with the current world average [34]. In each case, the
theoretical predictions have been evaluated using bins of
the same size as in the experiment and therefore appear as
histograms in the plots. The data is corrected for detector
effects, but not for hadronisation effects.

As previously noted, the observables that we shall con-
sider are identically zero for final state configurations con-
taining fewer than four particles. However, two and three
parton events will give non-negligible contributions to the
observable when the parton hadronises and becomes a jet
[35]. In most cases these will be for small values of the ob-
servable where the infrared logarithms are large and the
perturbative calculation is unreliable. Nevertheless, this
effect should be borne in mind throughout the compar-
isons made in this paper.4

4 A better procedure is to attempt to correct the data for
hadronisation effects using a shower model such as the JET-
SET Monte Carlo [36].
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Fig. 2. The leading order (dashed) and next-to-leading order (solid) predictions evaluated at the physical scale µ =
√

s = MZ

for a 1/σhad · dσ/dBmin compared to the published DELPHI data [33] and b the difference between data and NLO theory
(normalised to NLO). The short-dashed line shows the next-to-leading order prediction using the FAC scale (see (2.12)).
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Fig. 3. The leading order (dashed) and next-to-leading order (solid) predictions evaluated at the physical scale µ =
√

s = MZ

for a 1/σhad · dσ/d(M2
L/s) compared to the published DELPHI data [33] and b the difference between data and NLO theory

(normalised to NLO). The short-dashed line shows the next-to-leading order prediction using the FAC scale (see (2.12))
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Fig. 4. The leading order (dashed) and next-to-leading order (solid) predictions evaluated at the physical scale µ =
√

s = MZ for
a 1/σhad ·dσ/dyJ

4 compared to the published DELPHI data [33] and b the difference between data and NLO theory (normalised
to NLO). The short-dashed line shows the next-to-leading order prediction using the FAC scale (see (2.12))
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Fig. 5. The leading order (dashed) and next-to-leading order (solid) predictions evaluated at the physical scale µ =
√

s = MZ for
a 1/σhad ·dσ/dyD

4 compared to the published DELPHI data [33] and b the difference between data and NLO theory (normalised
to NLO). The short-dashed line shows the next-to-leading order prediction using the FAC scale (see (2.12))
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Table 6. The leading and next-to-leading order coefficients for
the jet transition variable in the JADE-E0 algorithm yJ

4

yJ
4 ByJ

4
CyJ

4

0.0075 (6.02 ± 0.01) · 102 (1.75 ± 0.01) · 104

0.0125 (3.60 ± 0.01) · 102 (1.33 ± 0.02) · 104

0.0175 (2.47 ± 0.01) · 102 (1.02 ± 0.04) · 104

0.0225 (1.78 ± 0.01) · 102 (7.63 ± 0.32) · 103

0.0275 (1.34 ± 0.01) · 102 (6.19 ± 0.16) · 103

0.0325 (1.01 ± 0.01) · 102 (4.76 ± 0.12) · 103

0.0375 (7.88 ± 0.08) · 101 (3.86 ± 0.11) · 103

0.0425 (6.19 ± 0.05) · 101 (3.07 ± 0.16) · 103

0.0475 (4.99 ± 0.05) · 101 (2.38 ± 0.12) · 103

0.0525 (3.89 ± 0.05) · 101 (2.08 ± 0.11) · 103

0.0575 (3.13 ± 0.05) · 101 (1.54 ± 0.05) · 103

0.0625 (2.43 ± 0.04) · 101 (1.26 ± 0.03) · 103

0.0675 (1.90 ± 0.03) · 101 (9.68 ± 0.58) · 102

0.0725 (1.49 ± 0.04) · 101 (7.70 ± 0.35) · 102

0.0775 (1.21 ± 0.02) · 101 (5.89 ± 0.41) · 102

0.0825 (9.38 ± 0.18) · 100 (4.83 ± 0.35) · 102

0.0875 (6.94 ± 0.09) · 100 (3.50 ± 0.19) · 102

0.0925 (5.36 ± 0.11) · 100 (2.48 ± 0.27) · 102

0.0975 (3.85 ± 0.06) · 100 (1.93 ± 0.19) · 102

0.1025 (2.84 ± 0.07) · 100 (1.26 ± 0.11) · 102

0.1075 (1.97 ± 0.07) · 100 (9.99 ± 1.22) · 101

0.1125 (1.30 ± 0.06) · 100 (6.69 ± 0.94) · 101

0.1175 (8.32 ± 0.37) · 10−1 (3.57 ± 0.52) · 101

0.1225 (4.94 ± 0.07) · 10−1 (2.36 ± 0.44) · 101

0.1275 (3.05 ± 0.10) · 10−1 (1.85 ± 0.38) · 101

0.1325 (1.70 ± 0.03) · 10−1 (8.38 ± 3.15) · 100

0.1375 (8.94 ± 0.29) · 10−2 (4.99 ± 1.15) · 100

0.1425 (4.20 ± 0.12) · 10−2 (2.01 ± 0.38) · 100

0.1475 (1.67 ± 0.07) · 10−2 (1.08 ± 0.73) · 100

0.1525 (5.51 ± 0.44) · 10−3 (3.94 ± 2.32) · 10−1

0.1575 (8.48 ± 0.58) · 10−4 (4.37 ± 2.44) · 10−2

Figures 2 and 3 show the comparison between the lead-
ing order and next-to-leading order predictions evaluated
at the physical scale µ =

√
s = MZ for narrow jet broad-

ening and light hemisphere mass with the published DEL-
PHI data [33]. We see that in all three cases, the LO pre-
diction undershoots the data by a significant factor (about
a factor of four), and that including the NLO correction
improves the situation but still gives a rate that is much
lower than the data. However, the NLO prediction still
contains a large renormalisation scale uncertainty. Usu-
ally, one varies the choice of scale about the physical scale
by a factor of two or so, but as discussed earlier, the FAC
scale defined in (2.12) is an attractive alternative choice
in that the known ultraviolet logarithms are resummed
[37]. For both of these variables, the FAC scale is signifi-
cantly less than the physical scale, for example, for Bmin
, µFAC ∼ 0.06

√
s. This has the effect of increasing αs,

thereby increasing the NLO prediction and in both cases,

we see much improved agreement at larger values of the
observable. At smaller values, and particularly in the re-
gion where the data turns over the agreement is still poor.
This, of course, is where the infrared logarithms are large
and need to be resummed. Furthermore, we also expect
non-perturbative hadronisation effects or power correc-
tions to influence the perturbative shape of the distribu-
tion we have been concerned with [38,39]. These contri-
butions (together with resummation of the infrared loga-
rithms) have played an important role in extracting use-
ful information from analyses of three jet shape variables,
and are likely to be important in analysing four jet event
shapes.

A similar comparison of the perturbative predictions
for the jet transition rates with the DELPHI measure-
ments is made in Figs. 4 and 5. Once again, the LO dis-
tribution lies well below the data. This time, the NLO
prediction lies much closer to the data for most of the
available kinematic range. The FAC scale rate usually lies
above the NLO prediction so that the data lies within the
range of uncertainty engendered by the renormalisation
group. Previous studies of both 2 and 3 jet rate data have
shown good agreement between the data and the predic-
tions at the physical scale (see for example [40]) which
implies that hadronization effects are small at the physi-
cal scale. The apparently much better agreement between
the yS

4 NLO distributions at the physical scale and the
data (compared with the other shape variables), may be
interpreted as a similar indication of small hadronization
corrections. The very small choice of scale that was previ-
ously required to match the leading-order results to data
is now unnecessary.

For completeness, Figs. 6 and 7 show the DELPHI
data and perturbative predictions for the D parameter
and Tminor repectively. As expected from the analysis of
Nagy and Trócsányi [11], the LO prediction for D is too
low by a factor of about four, while at the physical scale
µ =

√
s = MZ the NLO distribution is roughly twice as

large but still lies a factor of two below the data. However,
for the FAC scale (which for the D parameter is approx-
imately 0.035

√
s) the prediction overshoots by 50% or so

for D > 0.1 where the fixed order prediction is least af-
fected by large infrared logs.

The importance of resumming these logs is clearly
shown in Fig. 7 where the Tminor distribution is shown.
For Tminor > 0.1 the data again lies between the next-to-
leading order predictions at the physical and FAC scales
(which encompass an uncertainty of about a factor of al-
most three for Tminor ∼ 0.2). However, the turn-over at
Tminor = 0.1 cannot be modelled without resumming the
large logs which cause the perturbative prediction to grow
rapidly. The same is true at small values of the light hemi-
sphere mass and narrow jet broadening although there the
effects are less pronounced because of the choice of bin
sizes.
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Fig. 6. The leading order (dashed) and next-to-leading order (solid) predictions evaluated at the physical scale µ =
√

s = MZ for
a 1/σhad ·dσ/dD compared to the published DELPHI data [33] and b the difference between data and NLO theory (normalised
to NLO). The short-dashed line shows the next-to-leading order prediction using the FAC scale (see (2.12))
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Fig. 7. The leading order (dashed) and next-to-leading order (solid) predictions evaluated at the physical scale µ =
√

s = MZ

for a 1/σhad · dσ/dTminor compared to the published DELPHI data [33] and b the difference between data and NLO theory
(normalised to NLO). The short-dashed line shows the next-to-leading order prediction using the FAC scale (see (2.12))
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6 Conclusions

In this paper we have introduced a new Monte Carlo
program for the calculation of 4 jet like observables in
electron-positron annihilation. This program, EERAD2, is
based on the known squared matrix elements for γ∗ →
4 and 5 partons and numerically implements the neces-
sary cancellations between the different final states using
a hybrid of the commonly used subtraction and slicing
schemes. This infrared cancellation scheme is detailed in
the appendix.

We have checked that the numerical results obtained
with EERAD2 are consistent with the two other available
four jet programs MENLO PARC and DEBRECEN by recalcu-
lating the distributions for some of the previously deter-
mined four jet event variables (such as the D parameter,
thrust minor and the jet transition rate for the Durham
jet algorithm) as well as the four jet rate. Within the (es-
timated) statistical Monte Carlo errors, there is excellent
agreement.

We have also presented the leading and next-to-leading
order scale independent coefficients for some previously
uncalculated observables; the light hemisphere mass, nar-
row jet broadening and the four jet transition variables
with respect to the JADE and Geneva jet finding algo-
rithms. For each of these observables, the next-to-leading
order corrections calculated at the physical scale signif-
icantly increase the rate compared to leading order (see
fig. 1). The renormalisation scale dependence is also rather
large.

Furthermore, for each of these observables, we have
made a comparison with the published data collected at
LEP 1 energies by the DELPHI collaboration with one
important caveat - this data is uncorrected from hadroni-
sation effects which may be particularly marked at small
values of the variables where hadronisation of two and
three jet events may be significant. With the exception of
the y4 distributions, the data lies well above the NLO pre-
diction, apart from in the infrared region where the NLO
prediction grows rapidly (and where resummation of large
logarithms is essential). Using the FAC scale, which is of
the order of 0.1–1% of the physical scale, increases the
predicted rate and in general produces a slightly better
agreement with the data. Taking together the size of the
NLO corrections, the renormalisation scale dependence
and poor agreement with data it appears that the inclu-
sion of even higher order corrections and/or power correc-
tions will be necessary to extract any useful information
from these observations.

Although at first sight this may seem discouraging,
it is instructive to compare this situation with the well-
established results for the 3 jet-like variable 1 − Thrust.
In this case, the next-to-leading order coefficient is also
large compared to the leading order term, resulting in a
K factor at the physical scale which varies from 1.4–1.6
throughout most of the kinematic range of the variable.
These values are very similar to the case for the four jet
observables that we have already discussed. In addition,
it is also possible to compare the pure perturbative pre-
diction for 1 − Thrust with the DELPHI data, as we have

done for the four jet variables in Sect. 4. This yields re-
sults which are qualitatively very similar to those shown
for the D-parameter and Tminor in Figs. 6 and 7. In these
cases, it is clear that the perturbative prediction – either
at the physical scale or using the FAC choice – is insuf-
ficient to describe the data. However, after resummation
of large logarithms and the inclusion of non-perturbative
power corrections proportional to the inverse of the en-
ergy scale of the process, 1/Q, it is known that the data
for 1 − Thrust can be described very well [39]. In fact the
thrust distribution forms a text-book example of how to
interpret hadronic final states within QCD.

From this we conclude that discarding four jet-like
event shape variables as unreliable at next-to-leading or-
der is premature without proper consideration of the types
of non-perturbative terms that have been successfully in-
cluded for a variety of three jet-like observables. In this
we disagree with the conclusions of reference [11].

In addition to these correction terms, all of the dis-
tributions that we have considered exhibit the infrared
logarithmic behaviour (as the observable tends to zero)
that is inevitable in a fixed order calculation. These log-
arithms are present in the coefficients BO4 and CO4 and
can be parametrized in the form shown in (2.13). By per-
forming a fit to the distributions at low enough values of
the variable O4 one should be able to extract the values
of the coefficents Anm and, where possible, perform expo-
nentiation to resum the infrared logarithms.
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A Cancellation of infrared singularities

In order to compute next-to-leading order quantities in
perturbation theory, it is necessary to combine the con-
tribution from n-parton one-loop Feynman diagrams with
the (n+1)-parton bremstrahlung process. The virtual ma-
trix elements are divergent and contain both infrared and
ultraviolet singularities. The ultraviolet poles are removed
by renormalisation, however the soft and collinear infrared
poles are only cancelled when the virtual graphs are com-
bined with the bremstrahlung process. Although the can-
cellation of infrared poles can be done analytically for sim-
ple processes, for complicated processes, it is necessary to
resort to numerical techniques.
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A.1 A simple example

The numerical problem has been nicely formulated by
Kunszt and Soper [41] by means of a simple example in-
tegral,

I = lim
ε→0

{∫ 1

0

dx

x
xεF (x) − 1

ε
F (0)

}
, (A.1)

where F (x) is a known but complicated function repre-
senting the (n+1)-parton bremstrahlung matrix elements.
Here x represents the angle between two partons or the
energy of a gluon and the integral over x represents the
additional phase space of the extra parton. As x → 0, the
integrand is regularised by the xε factor as in dimensional
regularisation, however, the first term is still divergent as
ε → 0. This divergence is cancelled by the second term -
the n-parton one-loop contribution - so that the integral
is finite. A variety of methods to compute I have been
developed.

The method used by Ellis, Ross and Terrano [1] is also
known as the subtraction method. Here, a divergent term
is subtracted from the first term and added to the second,

I = lim
ε→0

{∫ 1

0

dx

x
xε(F (x) − F (0))

+F (0)
∫ 1

0

dx

x
xε − 1

ε
F (0)

}
=
∫ 1

0

dx

x
(F (x) − F (0)) , (A.2)

so that the integral is manifestly finite. This method has
the advantages of requiring (in principle) no extra theo-
retical cutoffs and making no approximations. However,
in practice, there are still large cancellations in the nu-
merator and there is a hidden parameter which cuts the
integral off at the lower end. Recently, this technique has
been developed to describe general processes [16].

An alternate approach known as the phase space slic-
ing method has also been widely used [2]. The integration
region is divided into two parts, 0 < x < δ and δ < x < 1.
In the first region, the function F (x) can be approximated
by F (0) provided the arbitrary cutoff δ � 1,

I ∼ lim
ε→0

{∫ 1

δ

dx

x
xεF (x) + F (0)

∫ δ

0

dx

x
xε − 1

ε
F (0)

}

∼
∫ 1

δ

dx

x
F (x) + F (0) ln(δ). (A.3)

This method is extremely portable [18] since the soft and
collinear approximations of the matrix elements and phase
space are universal. This makes it easy to apply to a wide
variety of physically interesting processes. However, the
disadvantage is the presence of the arbitrary cutoff δ. The
integral should not depend on δ, and the δ dependence of
the two terms in (A.3) should cancel. Since the approx-
imations are reliable only when δ is small, this can give
rise to numerical problems.

Finally, we can imagine combinations of these two ap-
proaches - the hybrid approach. There are two scales in
the problem, δ and ∆. In the region 0 < x < δ, we adopt
the slicing procedure, while in the range δ < x < ∆ we
add and subtract an analytically integrable set of univer-
sal terms, E(x), to (A.3),

I ∼
∫ 1

δ

dx

x
F (x)+F (0) ln(δ)−

∫ ∆

δ

dx

x
E(x)+

∫ ∆

δ

dx

x
E(x),

(A.4)
which on rearrangement yields,

I ∼
∫ 1

δ

dx

x
(F (x) − E(x)Θ(∆ − x))

+
∫ ∆

δ

dx

x
E(x) + F (0) ln(δ). (A.5)

Because we explicitly add and subtract the same quan-
tity, there can be no dependence on ∆ which can therefore
be taken to be large. However, the slicing approximation
requires δ → 0. For this approach to be useful, two con-
ditions must be satisfied. First, the second term in (A.5)
must be evaluated analytically without making any ap-
proximation in the phase space and should produce a term
−F (0) ln(δ) from the lower boundary that explicitly can-
cels the third (slicing) term. This allows the limit δ → 0
to be taken (inasmuch as that can be achieved numeri-
cally). Second, F (x) ∼ E(x) as x → 0 and more usefully
E(x) is smooth and as close to F (x) as possible over the
whole range of x < ∆, so that the first term in (A.5) can
be safely evaluated numerically. This is the technique we
have adopted in this paper.

A.2 Singular behaviour of matrix elements

Clearly the choice of the subtraction function E(x) re-
quires some care, as does the integration over the phase
space variables x. To help us do this in a sensible way, we
first recall the well known singular behaviour of the ma-
trix elements. This is most clearly seen by decomposing
the amplitude according to the various colour structures.
For example, in the process,

e+e− → qq̄ + n g,

the amplitude can be written as,

M(Q1, Q2; 1, . . . , n) = Ŝn+2
µ (Q1; 1, . . . , n;Q2)V

µ, (A.6)

where the hadronic current is given by,

Ŝn+2
µ (Q1; 1, . . . , n;Q2) (A.7)

= iegn
∑

P (1,...,n)

(T a1 . . . T an)c1c2Sµ(Q1; 1, . . . , n;Q2).

Here, Sµ(Q1; 1, . . . , n;Q2) represents the colourless sub-
amplitude where the gluons (with colours a1, . . . , an) are
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emitted in an ordered way from the quarks (with colours
c1 and c2). The colour matrices are normalised such that,

Tr (T aiT aj ) =
1
2
δaiaj .

By summing over all permutations of gluon emission, all
Feynman diagrams and colour structures are accounted
for. On squaring, we find that for n ≥ 1 the leading colour
piece is simply,∣∣∣Ŝn+2

µ V µ
∣∣∣2 = e2

(
g2N

2

)n(
N2 − 1

N

)
×

∑
P (1,...,n)

(∣∣∣Sµ(Q1; 1, . . . , n;Q2)V
µ
∣∣∣2

+O
(

1
N2

))
. (A.8)

The subleading terms are slightly more complicated, but
may be straightforwardly obtained by considering dia-
grams with gluons replaced by one or more photons.5

The advantage of the colour decomposition is that the
ordered subamplitudes have particularly simple singular
limits. For example, in the limit where gluon u is soft,
we have the QED-like factorisation into an eikonal factor
multiplied by the colour ordered amplitude with gluon u
removed, but the ordering of the hard gluons preserved,∣∣∣Sµ(Q1; 1, . . . , a, u, b, . . . , n;Q2)V

µ
∣∣∣2 (A.9)

→ Saub(sab, sau, sub)
∣∣∣Sµ(Q1; 1, . . . , a, b, . . . , n;Q2)V

µ
∣∣∣2,

with the eikonal factor given by,

Saub(sab, sau, sub) =
4sab

sausub
. (A.10)

Similarly, in the limit where two particles become collinear,
the sub-amplitudes factorise. For example, if gluons a and
b become collinear and form gluon c, then only colour con-
nected gluons give a singular contribution. For example,∣∣∣Sµ(Q1; 1, . . . , a, b, . . . , n;Q2)V

µ
∣∣∣2 (A.11)

→ Pgg→g(z, sab)
∣∣∣Sµ(Q1; 1, . . . , c, . . . , n;Q2)V

µ
∣∣∣2.

For gluons that are not colour connected, there is no sin-
gular contribution as sab → 0, and, when integrated over
the small region of phase space where the collinear ap-
proximation is valid, give a negligible contribution to the
cross section. Here z is the fraction of the momentum car-
ried by one of the gluons and, after integrating over the

5 Here, we have focussed on the two quark process, however,
the same type of colour decomposition can be applied to the
four quark process, e+e− → qq̄QQ+(n−2)g, (see for example
[42,43]). The structure appears to be more complicated, how-
ever the singular behaviour of individual contributions follows
the same pattern.

azimuthal angle of the plane containing the collinear par-
ticles with respect to the rest of the hard process, the
collinear splitting function Pgg→g is given by,

Pgg→g(z, s) =
2
s
Pgg→g(z) (A.12)

where the usual Altarelli-Parisi splitting kernel with the
colour factor removed is given by [44],

Pgg→g(z) =
(

1 + z4 + (1 − z)4

z(1 − z)

)
. (A.13)

Similar splitting kernels exist for other combinations of
collinear partons [44],

Pqg→q(z) =
(

1 + z2

1 − z

)
, (A.14)

Pqq̄→g(z) =
(
z2 + (1 − z)2

)
, (A.15)

with Pgq→q(z) = Pqg→q(1 − z). As before, the colour fac-
tors have been removed and azimuthal averaging of the
collinear particle plane is understood.

In both the soft and collinear limits, the colour or-
dered squared amplitudes factorise into a squared ampli-
tude containing one less parton multiplied by a factor that
depends on the the unresolved particle and the two ad-
jacent ‘hard’ particles. We view the two ‘hard’ particles
as an antenna from which the unresolved parton is radi-
ated. It therefore makes sense to divide the phase space
in a similar way and to treat the subtraction term as the
singular factor for the whole antenna integrated over the
unresolved phase space.

A.3 Phase space factorisation

Let us consider an (n+1) particle phase space described by
momenta pi with p2

i = 0 for i = 1, . . . , n . If the total cen-
tre of mass energy is Q, then let us denote the phase space
by, dPS(Q2; p1, . . . , pn). As discussed above, we wish to
relate the full (n+1) particle phase space to an n particle
phase space whenever one of the original (n + 1) particles
is unresolved. Let the unresolved particle be labelled by u
and the two adjacent hard particles by a and b, then the
phase space can be factorised as,

dPS(Q2; p1, . . . , pn) = dPS(Q2; p1, . . . , paub, . . . , pn)

×dsaub

2π
dPS(saub; pa, pu, pb), (A.16)

where paub = pa+pu+pb and p2
aub = saub. To factorise the

phase space into an n particle phase space multiplied by a
factor containing integrals over the unresolved invariants
sau and sub that appear in the singular limits of the matrix
elements, we multiply the r.h.s. of (A.16) by,

dPS(sAB ; pA, pB) /

∫
dPS(sAB ; pA, pB), (A.17)



J.M. Campbell et al.: Four jet event shapes in electron-positron annihilation 259

where particles A and B have momenta pA and pB such
that, paub = pAB = pA+pB , p2

A = p2
B = 0 and saub = sAB .

In other words,

dPS(Q2; p1, . . . , pn) = dPS(Q2; p1, . . . , pAB , . . . , pn)

×dsAB

2π
dPS(sAB ; pA, pB) × dPSsing

= dPS(Q2; p1, . . . , pA, pB , . . . , pn) × dPSsing.(A.18)

As desired, we have the phase space for an final state con-
taining n lightlike particles multiplied by dPSsing. Work-
ing in four-dimensions and after integration over the Euler
angles,

dPSsing =
dPS(saub; pa, pu, pb)∫

dPS(sAB ; pA, pB)
(A.19)

=
1

16π2 saubdxaudxubdxabδ(1 − xau − xub − xab),

where xij = sij/saub. For this to work, a mapping must
exist that determines pA and pB for a given set of mo-
menta pa, pb and pu. Many choices are possible [17,45]
and we choose the symmetric mapping of [45],

pA =
1
2

[
1 + ρ +

sub(1 + ρ − 2r1)
sab + sau

]
pa + r1pu

+
1
2

[
1 − ρ +

sau(1 − ρ − 2r1)
sab + sub

]
pb,

pB =
1
2

[
1 − ρ − sub(1 + ρ − 2r1)

sab + sau

]
pa + (1 − r1)pu

+
1
2

[
1 + ρ − sau(1 − ρ − 2r1)

sab + sub

]
pb, (A.20)

where,
r1 =

sub

sau + sub
, (A.21)

and,

ρ =

√
s2

ab + (sau + sub)sab + 4r1(1 − r1)sausub

sabsaub
. (A.22)

Note that this transformation approaches the singular lim-
its smoothly. For example, as sau → 0, then r1 → 1, ρ → 1
and pA → pa + pu, pB → pb.

A.4 Antenna factorisation of the matrix elements

Having factorised the phase space, we now wish to find the
analogues of the subtraction functions E(x) discussed in
Appendix A.1. These functions should ideally be valid over
the whole of the antenna phase space dPSsing and, in the
soft and collinear regions must match onto the singular
limits discussed in Appendix A.2. In other words, for a
given (n+1) particle amplitude, in the limit where particle
u is unresolved,∣∣∣Sµ(. . . , a, u, b, . . .)V µ

∣∣∣2 → Aaub

∣∣∣Sµ(. . . , A, B, . . .)V µ
∣∣∣2,

(A.23)

where we have replaced the antenna comprising a, u, b by
the hard partons A and B to obtain an n particle ampli-
tude. The antenna function Aaub depends on the momenta
of the radiated particles a, b and u, but the n particle am-
plitude |SµV µ|2 does not.

The leading colour contribution to an observable cross
section from an (n+1) particle final state with a particular
colour ordering is proportional to,(

N2 − 1
N2

)(
g2N

2

)n+1 ∣∣∣Sµ(. . . , a, u, b, . . .)V µ
∣∣∣2

×J(n+1)dPS(Q2; . . . , pa, pu, pb, . . .), (A.24)

where the observable function J(n+1) represents the cuts
applied to the (n + 1) particle phase space to define the
observable. Using the factorisation of the matrix elements
defined in (A.23), when particle u is unresolved we should
subtract,(

g2N

2

)n+1

Aaub

∣∣∣Sµ(. . . , A, B, . . .)V µ
∣∣∣2

×J(n) dPS(Q2; . . . , pa, pu, pb, . . .), (A.25)

from the (n+1) particle contribution and, using the phase
space factorisation of (A.18), add,(

g2N

2

)n+1

Aaub dPSsing
∣∣∣Sµ(. . . , A, B, . . .)V µ

∣∣∣2
×J(n) dPS(Q2; . . . , pA, pB , . . .), (A.26)

to the n particle contribution where both the observable
function J and matrix elements |SµV µ|2 depend only on
the momenta of the n remaining hard partons. Note that
for any infrared safe observable, in the limit that one par-
ticle is unresolved, J(n+1) → J(n). In the subtraction term
(A.25), we use the transformations of (A.20) to map the
momenta pa, pu and pb defined in the (n+1) particle phase
space onto the momenta pA and pB used in the n-particle
matrix elements and observable functions. In (A.26), all
dependence on the momenta of particles a, b and u may
be integrated out to give the antenna factor, F ,

FAB(sAB) =
(

g2N

2

)∫
Aaub dPSsing, (A.27)

multiplying the n particle cross section (for a given colour
ordered amplitude),(

g2N

2

)n ∣∣∣Sµ(. . . , A, B, . . .)V µ
∣∣∣2

×J(n) dPS(Q2; . . . , pA, pB , . . .). (A.28)

The full set of subtraction terms is obtained by summing
over all possible antennae.

The Dalitz plot for the (AB) → aub phase space is
shown in Fig. 8. In the hybrid scheme we are implement-
ing, we use the slicing method of [18] in the region
min(sau, sub) < δ, and the subtraction scheme in the re-
gion, δ < min(sau, sub) < ∆. In the slicing region, the
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Fig. 8. The phase space for the decay (AB) → aub. The
cut min(sau, sub) = δ with δ = 0.1 saub is shown as a solid
line while min(sau, sub) = ∆ is shown as a dashed line for
∆ = 0.25 saub. The region min(sau, sub) < δ defines where the
slicing approach is utilised, with the soft and collinear regions
demarked by dotted lines. Antenna subtraction is applied when
δ < min(sau, sub) < ∆

phase space and soft and collinear approximations to the
matrix elements are kept in D = 4 − 2ε dimensions to
regularise the singularities present when either invariant
vanishes. Using the approach of [18], there are three sepa-
rate contributions (a) soft gluon when max(sau, sub) < δ,
b a and u collinear when sau < δ but sub > δ and (c) b
and u collinear when sub < δ but sau > δ.

Before turning to the explicit forms for the antenna
subtraction terms, we note that while quarks are only di-
rectly colour connected to one particle - a gluon or an-
tiquark, gluons are directly connected to two particles -
the gluon (or quark) on either side. Therefore,while the
quark (or antiquark) appear in a single antenna, gluons
appear in two. This gives an ambiguity in how to assign
the collinear singularities of a pair of gluons to each an-
tenna. Later we will exploit this ambiguity to make the
antenna functions Aaub for different pairs of hard partons
finite simpler.

A.4.1 Quark-antiquark antenna

Let us first consider a system containing a quark, anti-
quark and a gluon. This is produced by an antenna com-
prising of a hard quark and antiquark pair that decays by
radiating a gluon. Any function that has the correct soft
gluon and collinear quark/gluon singularities in the ap-
propriate limit is satisfactory. Here the hard particles in
the antenna are Q and Q which radiate to form q, q̄ and

the gluon g. A suitable choice for the antenna function is,

Aqgq̄ =
|Sµ(q; g; q̄)V µ|2
|Sµ(Q;Q)V µ|2

=
2

saub

(
xau

xub
+

xub

xau
+

2xabxaub

xauxub

)
. (A.29)

Because this is proportional to the three parton matrix
elements, |Sµ(q; g; q̄)V µ|2, it automatically contains the
correct soft and collinear limits. Furthermore, it is smooth
over the whole three particle phase space and singularities
only appear in the sau → 0 and sub → 0 limits.

Explicitly integrating over the antenna phase space for
δ < min(sau, sub) < ∆ we find,

FQQ(sQQ) =
(

g2N

2

)∫
Aqgq̄ dPSsing

=
(

αsN

2π

)(
ln2

(
δ

sQQ

)
+

3
2

ln

(
δ

sQQ

))

+F∆
QQ

(
∆

sQQ

)
+ O(δ). (A.30)

Since we intend to take the δ → 0 limit, the terms of O(δ)
may be safely neglected. The δ independent function F∆

QQ

is given by,

F∆
QQ

(x) =
(

αsN

2π

)(
− ln2 (x) +

5x

2
− 2Li2(x)

+
(

3
2

− 2x +
x2

2

)
ln
(

1 − x

x

))
. (A.31)

A.4.2 Quark-gluon antenna

For antenna made of a quark Q and gluon G, there are
two possible ways of radiating. Either a gluon can be radi-
ated so that a quark-gluon-gluon system is formed, or the
gluon may split into a antiquark-quark pair. This latter
possibility is subleading in the number of colours and the
discussion of situations like this is deferred to Sect. A.4.4.

For a quark-gluon-gluon system there is a less obvious
choice of antenna function, particularly since the singu-
larity that is produced when the gluon splits sits in more
than one antenna. If, in the collinear limit, the gluon splits
into an unresolved gluon u which carries momentum frac-
tion z and a hard gluon b with momentum fraction 1 − z,
the antenna function should naively be proportional to
Pgg→g which is singular as z → 0 and z → 1. This cor-
responds to singularities as both sub → 0 and sab → 0.
However, because the collinear singularity sits in more
than one antenna - the two gluons also occur in a sec-
ond antenna where the role of the two gluons is reversed
- we can make use of the N = 1 supersymmetric identity
to rewrite Pgg→g as,

Pgg→g = Pqg→q + Pgq→q − Pqq̄→g. (A.32)



J.M. Campbell et al.: Four jet event shapes in electron-positron annihilation 261

The soft singularities as z → 0 are contained in Pgq→q

while those as z → 1 are in Pqg→q. We therefore divide
Pgg→g amongst the two antennae such that Pgq→q sits
in the antenna where gluon u is unresolved. The z → 1
singularities are placed in the antenna where the role of
the two gluons is reversed. The remaining Pqq̄→g may be
divided between the two antennae according to choice.
With a slight modification due to the Pqq̄→g term, the
antenna function used for the QQ antenna has the correct
limits, so that,

Aqgg = Aqgq̄ − 2
saub

(
x2

au

xubxaub

)
. (A.33)

This is again smooth over the whole three particle phase
space with singularities only appearing in the sau → 0 and
sub → 0 limits. In particular, as z → 0, the collinear limit
matches onto the soft limit which would not have been
the case if we had divided the soft/collinear singularities
equally between the two antenna.

After integrating over the antenna phase space for δ <
min(sau, sub) < ∆ we find,

FQG(sQG) =
(

g2N

2

)∫
Aqgg dPSsing

=
(

αsN

2π

)(
ln2
(

δ

sQG

)
+

10
6

ln
(

δ

sQG

))

+F∆
QG

(
∆

sQG

)
(A.34)

with the δ independent function F∆
QG is given by,

F∆
QG(x) =

(
αsN

2π

)(
− ln2 (x) +

19x

6
− x2

6
+

x3

9
− 2Li2(x)

+
(

10
6

− 2x +
x2

2
− x3

6

)
ln
(

1 − x

x

))
. (A.35)

Antennae containing a gluon and an antiquark are de-
scribed by,

Aggq̄ = Aqgg(a ↔ b), (A.36)

and,
FGQ(sGQ) = FQG(sGQ). (A.37)

A.4.3 Gluon-gluon antenna

For antenna comprising only gluons, we repeat this SUSY
inspired trick for each of the resolved gluons so that,

Aggg = Aqgq̄ − 2
saub

(
x2

au

xubxaub
+

x2
ub

xauxaub

)
. (A.38)

Note that Kosower [45] has proposed an antenna factori-
sation for gluonic processes,

AKosower
ggg =

4
saub

(
(xaub(xaub − xab) + x2

ab)
2

xauxubxabxsub

)
, (A.39)

which, in the u/b collinear limit regenerates the full Pgg→g

splitting function, as well as the soft limits.
Integration of the antenna function Aggg over the

whole of the subtraction region yields,

FGG(sGG) =
(

g2N

2

)∫
Aggg dPSsing

=
(

αsN

2π

)(
ln2
(

δ

sGG

)
+

11
6

ln
(

δ

sGG

))

+F∆
GG

(
∆

sGG

)
(A.40)

with the δ independent function F∆
GG is given by,

F∆
GG(x) =

(
αsN

2π

)(
− ln2 (x) +

23x

6
− 2x2

6
+

2x3

9

−2Li2(x) +
(

11
6

− 2x +
x2

2
− x3

3

)
ln
(

1 − x

x

))
.

(A.41)

A.4.4 Antenna where a quark-antiquark pair merge

There are also configurations when two (or more) colour
lines are present, one ending in an antiquark the other
starting with a quark of the same flavour. Here the matrix
elements have the form,∣∣∣Sµ(. . . , a, q̄|q, b, . . .)V µ

∣∣∣2. (A.42)

In the collinear limit, the quark-antiquark pinch the two
colour lines together to form a single colour line,∣∣∣Sµ(. . . , a, q̄|q, b, . . .)V µ

∣∣∣2
→ Pq̄q→g(z, sq̄q)

∣∣∣Sµ(. . . , a, G, b, . . .)V µ
∣∣∣2,(A.43)

with Pq̄q→G(z, s) given by (A.12) and (A.15). There is no
soft singularity, nor is there any dependence on the type
of adjacent parton, a or b. Clearly, the quark-antiquark
pair can sit in two antennae, (a, q̄, q) and (q̄, q, b) and we
have some freedom of how to assign the singularities to the
antennae. There are two obvious choices. Either we divide
the singular contribution equally over the two antennae,
or, we place the z2 part of Pq̄q→g(z) in one antenna and the
(1 − z)2 part in the other (as we did with the three gluon
antenna before). While there appears to be no preference,
we follow this latter route so that the antenna function
vanishes as the unresolved particle becomes soft,

Aaq̄q =
2

saq̄q

(
x2

aq̄

xq̄qxaq̄q

)
, (A.44)

and,

Aq̄qb = Aaq̄q(xaq̄ → xqb, xaq̄q ↔ xq̄qb). (A.45)
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Following this procedure and integrating over the whole
of the subtraction region yields,

FNF

aG (saG) =
(

g2NF

2

)∫
Aaq̄q dPSsing

=
(

αsNF

2π

)(
−1

6
ln
(

δ

saG

))

+FNF ∆
aG

(
∆

saG

)
, (A.46)

and,
FNF

Gb (sGb) = FNF

aG (sGb). (A.47)

The factor of NF arises because each of the NF quark
flavours may contribute. The δ independent function is,

FNF ∆
aG (x) = FNF ∆

Gb (x)

=
(

αsNF

2π

)(
−2x

3
+

x2

6
− x3

9

−
(

1
6

− x3

6

)
ln
(

1 − x

x

))
. (A.48)

A.5 Leading colour contribution to e+e− → 4 jets

As a pedagogical example, we consider the leading colour
contribution relevant for e+e− → 4 jets. The sub-leading
pieces are similarly calculated but the resulting expres-
sions are somewhat lengthy due to the many antennae
that are involved [43]. At leading order in the number
of colours, only the two quark and n gluon process con-
tributes6, so, at lowest order, the cross section is given
by,

dσLO
4

σ0
=

(2π)5

s

(
N2 − 1

N2

)(
αsN

2π

)2

×
∑

P (G1,G2)

∣∣∣Sµ(Q1;G1, G2;Q2)V
µ
∣∣∣2

×J(4) dPS(Q2;Q1G1, G2, Q2)I2, (A.49)

where I2 is the identical particle factor for the two gluon
final state. In practice, the 2! permutations precisely can-
cels the identical particle factor of 1/2!, and it is more
convenient to keep one particular ordering so that,

dσLO
4

σ0
=

(2π)5

s

(
N2 − 1

N2

)(
αsN

2π

)2 ∣∣∣
×Sµ(Q1;G1, G2;Q2)V

µ
∣∣∣2

×J(4) dPS(Q2;Q1G1, G2, Q2). (A.50)

6 The four quark process gives a contribution that is sup-
pressed by a factor of NF /N relative to the leading colour con-
tribution. Numerically this is an important contribution and,
together with the other subleading terms, is included in the
numerical results presented earlier.

Similarly, the leading colour contribution from the five
parton bremstrahlung process is,

dσ5

σ0
=

(2π)7

s

(
N2 − 1

N2

)(
αsN

2π

)3

×
∑

P (g1,g2,g3)

∣∣∣Sµ(q1; g1, g2, g3; q̄2)V µ
∣∣∣2

×J(5) dPS(Q2; q1, g1, g2, g3, q̄2)I3,

=
(2π)7

s

(
N2 − 1

N2

)(
αsN

2π

)3 ∣∣∣Sµ(q1; g1, g2, g3; q̄2)V µ
∣∣∣2

×J(5) dPS(Q2; q1, g1, g2, g3, q̄2).
(A.51)

Note that J5 projects the five parton momenta onto the
four jet like observable. Once again, we can cancel the
identical particle factor I3 = 1/3! against the 3! permu-
tations of the gluons, and retain the single permutation
indicated. For this colour ordering, three antennae will
contribute, (q1, g1, g2), (g1, g2, g3) and (g2, g3, q̄2) where in
each case the parton in the middle is unresolved. In the
first antenna, {pq1 , pg1 , pg2} → {pQ1 , pG1} according to
(A.20), the slicing cuts are min(sq1g1 , sg1g2) < δ and the
subtraction occurs over the range δ < min(sq1g1 , sg1g2) <
∆. Similar transformations and cuts act over the other
two antenna.

A.5.1 Slicing contribution

For the five parton matrix elements of (A.51), the sum
of infrared singularities from the three antennae in the
slicing approach gives a contribution to the four particle
final state which can be read directly from (3.79) of [18],

dσslice
4 = R(Q1;G1, G2;Q2)dσLO

4 . (A.52)

Retaining only the leading colour contribution (i.e.
dropping the contributions from the four quark process
proportional to the number of quark flavours),

R(Q1;G1, G2;Q2) =
(

αsN

2π

)
1

Γ (1 − ε)

×
[∑

ij

{
1
ε2

(
4πµ2

sij

)ε

− log2
(sij

δ

)}

+
3
2ε

(
4πµ2

δ

)ε

+
197
18

− π2

]

+
(αs

2π

) 2b0

ε

1
Γ (1 − ε)

(
4πµ2

δ

)ε

+O(ε) + O(δ),

with (at leading order in the number of colours) b0 =
11N/6 and where the sum runs over the pairs of adjacent
(colour connected) hard partons, ij = Q1G1, G1G2 and
G2Q2.
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A.5.2 Subtraction term

Since there are three antennae, we subtract three antennae
factors, such that the total subtraction term is,

dσsub
5

σ0
=

(2π)7

s

(
N2 − 1

N2

)(
αsN

2π

)3

(A.53)

×dPS(Q2; q1, g1, g2, g3, q̄2)

×
(

Aq1g1g2

∣∣∣Sµ(Q1;G1, g3; q̄2)V µ
∣∣∣2 J(4)

+ Ag1g2g3

∣∣∣Sµ(q1;G1, G2; q̄2)V µ
∣∣∣2 J(4)

+ Ag2g2q̄2

∣∣∣Sµ(q1; g1, G2;Q2)V
µ
∣∣∣2 J(4)

)
.

Here, we have used the mappings {pq1 , pg1 , pg2} → {pQ1 ,
pG1} according to (A.20) for the first antenna. We recall
that the subtraction occurs over the range δ < min(sq1g1 ,
sg1g2) < ∆ and that the observable function J4 is applied
to the momenta for Q1, G1, g3 and q̄2. Similar procedures
are applied to the other antennae.

However, we must add these terms back to the four
parton contribution. Here it is simplest to re-identify each
of the four particle momenta with the momenta relevant
for tree level. In other words, for the first antenna, {pq1 ,
pg1 , pg2} → {pQ1 , pG1} as before and pg3 → pG2 , pq̄2 →
pQ2

. This is safe to do since we integrate over the whole
four particle phase space. Altogether, we have,

dσsub
4 =

(
FQ1G1 + FG1G2 + FG2Q2

)
dσLO

4 . (A.54)

A.5.3 Virtual contribution

From [7], the matrix elements for the leading colour one-
loop contribution to the qq̄gg final state for this colour
ordering can be written in terms of a pole structure in ε
multiplying the lowest order matrix elements and a func-
tion L̂A that is finite as ε → 0,

LA(G1, G2) = V (Q1;G1, G2;Q2)
∣∣∣Sµ(Q1;G1, G2;Q2)V

µ
∣∣∣2

+L̂A(G1, G2). (A.55)

The divergent factor V is given by,

V (Q1;G1, G2;Q2) =
(

αsN

2π

)(
−P(sQ1G1)

ε2
−

P(sG2Q2
)

ε2

−P(sG1G2)
ε2

− 3
2

P(Q2)
ε

)
(A.56)

where we have introduced the notation,

P(s) =
(

4πµ2

−s

)ε
Γ 2(1 − ε)Γ (1 + ε)

Γ (1 − 2ε)
. (A.57)

In terms of cross sections, we have,

dσV
4 = V (Q1;G1, G2;Q2)dσLO

4 + dσV,finite
4 , (A.58)

with,

dσV,finite
4

σ0
=

(2π)5

s

(
N2 − 1

N2

)(
αsN

2π

)3

L̂A(G1, G2)

×J(4) dPS(Q2; pQ1 , pG1 , pG2 , pQ2
) (A.59)

Here L̂A is a finite function given in terms of the loga-
rithms and dilogarithms that arise in evaluating the one-
loop contributions.7 We have ensured that the kinematic
singularity structure of L̂A matches that of the tree-level∣∣∣Sµ(Q1;G1, G2;Q2)V µ

∣∣∣2. It can be written symbolically
as,

L̂A =
∑

i

Pi(s)Li, (A.60)

where the coefficients Pi(s) are rational polynomials of
invariants. The finite functions Li are the linear combi-
nations of scalar integrals defined in [7] which are well-
behaved in all kinematic limits, so that L̂A is numerically
stable. Unfortunately, the analytic expression for L̂A is
rather lengthy so we do not reproduce it here.

A.5.4 Next-to-leading order cross section

Assembling the various pieces, and applying coupling con-
stant renormalisation,(αs

2π

)
→
(

αs(µ)
2π

)(
1 − b0

(
αs(µ)

2π

)
(4π)ε

εΓ (1 − ε

)
,

(A.61)
the NLO four parton contribution is,

dσNLO
4 = dσV

4 + dσsub
4 + dσslice

4

= K(Q1;G1, G2;Q2)dσLO
4 + dσV,finite

4 ,(A.62)

where dσLO
4 and dσV,finite

4 are given by (A.49) and (A.59)
respectively with the replacement αs → αs(µ). The factor
K is the sum of the divergent one loop factor ((A.56)), the
slicing factor ((A.53)) and the subtraction term ((A.54)),

K(Q1;G1, G2;Q2) = V (Q1;G1, G2;Q2)

+R(Q1;G1, G2;Q2) + FQ1G1(sQ1G1)
+FG1G2(sG1G2) + FG2Q2

(sG2Q2
)

=
(

αs(µ)N
2π

)(
197
18

+
π2

2

+F∆
Q1G1

(
∆

sQ1G1

)
+ F∆

G1G2

(
∆

sG1G2

)
+F∆

G2Q2

(
∆

sG2Q2

)
7 Note that L̂A defined here is a factor of 8 smaller than that

in [7].
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−10
6

log
(

sQ1G1

Q2

)
− 11

6
log
(

sG1G2

Q2

)
−10

6
log
(

sG2Q2

Q2

))

+
(

αs(µ)
2π

)
2b0 log

(
µ2

Q2

)
. (A.63)

Similarly, the five parton leading colour contribution
to four jet-like observables is obtained from (A.51) and
(A.53),

dσNLO
5 = dσ5 − dσsub

5 , (A.64)

evaluated with the running αs(µ). By construction this
is finite as any one particle becomes unresolved. In the
slicing regions, dσNLO

5 = 0, while the phase space regions
over which the subtraction terms are applied are implicit
in the definition of the antenna functions.

Note that the four-dimensional limit of all cross sec-
tions may be taken with impunity now that the singular-
ities have cancelled. Furthermore, there is no dependence
in K on the slicing parameter δ which may also be taken as
small as desired. The subtraction parameter ∆ remains,
and both dσNLO

4 and dσNLO
5 individually depend on it.

However, the sum of both contributions is independent of
the choice of ∆. The precise value of ∆ can be made bear-
ing in mind the numerical stability and speed of the final
computer code. For small ∆, there may be sizeable can-
cellations between the four and five parton contributions,
while for large ∆ more CPU time is required to evaluate
the subtraction terms. For our numerical results, we have
taken,

δ = 10−8, ∆ = 10−3. (A.65)
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Nucl. Phys. B 486 (1997) 189

17. S. Catani and M.H. Seymour, Phys. Lett. B 378 (1996)
287; Nucl. Phys. B 485 (1997) 291.

18. W.T. Giele and E.W.N. Glover, Phys. Rev. D 46 (1992)
1980

19. E.W.N. Glover and M.R. Sutton, Phys. Lett. B 342
(1995) 375 [hep-ph/9410234]; A. Gehrmann-De Ridder
and E.W.N. Glover, Nucl. Phys. B 517 (1998) 269 [hep-
ph/9707224]

20. The fortran code for EERAD2 is available by email
from E.W.N.Glover@durham.ac.uk or via the web-page
http://qcd2.dur.ac.uk/EERAD2.html

21. E.W.N. Glover, hep-ph/9805481, to appear in Proceed-
ings of 33rd Rencontres de Moriond: QCD and High-
Energy Hadronic Interactions, March 1998

22. G. Parisi, Phys. Lett. B 74 (1978) 65
23. S. Brandt et al, Phys. Lett. 12 (1964) 57; E. Farhi, Phys.

Rev. Lett. 39 (1977) 1587
24. L. Clavelli, Phys. Lett. B 85 (1979) 111
25. S. Catani, G. Turnock, B.R. Webber, Phys. Lett. B 295

(1992) 269
26. J.D. Bjorken, S. Brodsky, Phys. Rev. D 1 (1970) 1416
27. JADE Collaboration, W. Bartel et al, Z. Phys. C 33

(1986) 23; JADE Collaboration, S. Bethke et al, Phys.
Lett. B 213 (1988) 235



J.M. Campbell et al.: Four jet event shapes in electron-positron annihilation 265

28. Yu.L. Dokshitzer, Contribution to the Workshop on Jets
at LEP and HERA, J. Phys. G17 (1991) 1441; S. Catani,
Yu.L. Dokshitzer, M. Olsson, G. Turnock and B.R. Web-
ber, Phys. Lett. B 269 (1991) 491

29. S. Bethke, Z. Kunszt, D.E. Soper and W.J. Stirling, Nucl.
Phys. B 370 (1992) 310 and hep-ph/9803267

30. G. Grunberg, Phys. Lett. B 95 (1980) 70; Phys. Rev. D
29 (1984) 2315

31. P. M. Stevenson, Phys. Rev. D 23 (1981) 2916
32. S. Catani, G. Turnock, B.R. Webber, L. Trentadue, Phys.

Lett. B 263 (1991) 461; Nucl. Phys. B 407 (1993) 3;
S. Catani, G. Turnock, B.R. Webber, Phys. Lett. B 272
(1991) 368; Phys. Lett. B 295 (1992) 269; S. Catani and
B.R. Webber, hep-ph/9801350

33. P. Abreu et al, DELPHI Collaboration, Z. Phys. C 73
(1996) 11

34. R.M. Barnett et al, Phys. Rev. D 54 (1996) 1 and 1997
off-year partial update from http://pdg.lbl.gov

35. A. Ali, J.G. Korner, Z. Kunszt, E. Pietarinen, G. Kramer,
G. Schierholz, and J. Willrodt, Nucl. Phys. B 167 (1980)
454
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